
Function as a Service
August 2018

Author
Chirag Arora

Supervisor
Belmiro Daniel Rodrigues Moreira

Group
IT-CM-RPS

CERN Openlab Report

Chirag Arora

Contents
Preface 3
Abstract 4
Introduction 5

OpenStack
CERN Cloud
FaaS

Serverless Computing
Functions as a Service
FaaS Advantages
Existing FaaS providers

Qinling 8
Architecture

qinling-api
qinling-engine
kubernetes
database
etcd
rabbit messaging queue

Quick Examples
Creating Runtimes
Creating Functions
Executing Functions
Webhooks

Contributions to Upstream 12
Bugs Discovered

Runtime incompatibility with systemd cgroupdriver

Patches Submitted
Support for protocol type in etcd3gw <#26> (Merged)
python3 runtime support <2002590> (Merged)
Support secure connection to etcd <2003284> (Under Review)
Customise timeout for function <2002174> (Under Review)
Custom initial number of replica sets <2003095> (Abandoned)

Next Steps 14
Conclusion 15

Function as a Service

 2

CERN Openlab Report

Chirag Arora

Preface
Writing this report wasn’t a difficult task. Still, completion would not have been

possible if I had not received the support of many individuals and an organisation.
Therefore, I would like to extend my gratitude towards all of them.

First of all, I would like to thank my supervisor, Belmiro, for considering me as a
deserving candidate for this position. I would also like to thank the IT-CM-RPS team
who was always there to help me in desperate times.

To CERN, for introducing and organising this wonderful program that made this
summer productive for procrastinating students like me. I should also not forget to
thank the Openlab program coordinators who were always there to help us.

Finally, I would like to express my sincerest gratitude towards all the fellow
Openlab students who played their part in a million little ways to make this summer as
worthwhile as possible.  

Function as a Service

 3

CERN Openlab Report

Chirag Arora

Abstract
Function as a service (FaaS) is a category of cloud computing services that

provides a platform allowing customers to develop, run, and manage application
functionalities without the complexity of building and maintaining the infrastructure
typically associated with developing and launching an app. Building an application
following this model is one way of achieving a "server-less" architecture, and is typically
used when building micro-services applications.

 FaaS is an extremely recent development in cloud computing, first made
available to the world by hook.io in October 2014, followed by AWS Lambda, Google
Cloud Functions, Microsoft AzureFunctions, and Oracle Cloud Fn in 2017 which are
available for public use. FaaS capabilities also exist in private platforms, as
demonstrated by Uber's Schemaless triggers.

The project’s goal was to understand how OpenStack Qinling can help the HEP
community developing/deploying applications/workload along with how this project
can be integrated with CERN cloud infrastructure. 

Function as a Service

 4

CERN Openlab Report

Chirag Arora

Introduction
OpenStack

OpenStack (O~S) is a free and open-source software platform for cloud
computing, mostly deployed as infrastructure-as-a-service (IaaS), whereby virtual
servers and other resources are made available to customers. The software platform
consists of interrelated components that control diverse, multi-vendor hardware pools
of processing, storage, and networking resources throughout a data centre. Users
either manage it through a web-based dashboard, through command-line tools, or
through RESTful web services.

OpenStack began in 2010 as a joint project of Rackspace Hosting and NASA. As of
2016, it is managed by the OpenStack Foundation, a non-profit corporate entity
established in September 2012 to promote OpenStack software and its
community. More than 500 companies have joined the project.

CERN Cloud
The CERN Private Cloud provides an Infrastructure-as-a-Service solution

integrated with CERN's computing facilities. Using self service portals

Function as a Service

 5

CERN’s data centres in Switzerland and Hungary are connected
by three independent 100 Gb/s optical fibre cables.

CERN Openlab Report

Chirag Arora

or cloud interfaces, users can rapidly request virtual machines for production, test and
development purposes. The machines can be of different capacities and run a variety of
Windows or Linux operating systems. CERN has two data centres in Switzerland and
Hungary. More than 300k cores available in these two data centres that run the analysis
jobs of the LHC collision data, and plus all IT services.

FaaS

Serverless Computing
Serverless computing is a cloud computing model which aims to abstract server

management and low-level infrastructure decisions away from developers. In this
model, allocation of resources is managed by the cloud provider instead of the
application architect, which can bring some serious benefits. In other words, serverless
aims to do exactly what it sounds like — allow applications to be developed without
concerns for implementing, tweaking, or scaling a server (at least, to the perspective of
a user).

Functions as a Service
FaaS is a relatively new concept that was first made available in 2014 by hook.io

and is now implemented in services such as AWS Lambda, Google Cloud Functions,
IBM OpenWhisk and Microsoft Azure Functions. It provides a means to achieve the
serverless dream allowing developers to execute code in response to events without
building out or maintaining a complex infrastructure. What this means is that you can
simply upload modular chunks of functionality into the cloud that are executed
independently. Instead of scaling a monolithic REST server to handle potential load, the
server can now be split into a bunch of functions which can be scaled automatically
and independently.

FaaS Advantages
• Fewer developer logistics: server infrastructure management is handled by

someone else.

• More time focused on writing code:  higher developer velocity.

Function as a Service

 6

CERN Openlab Report

Chirag Arora

• Inherently scalable. Rather than scaling the entire application, functions can be
scaled automatically and independently with usage.

• Never pay for idle resources.

• Built in availability and fault tolerance.

• Business logic is necessarily modular and conform to minimal shippable unit sizes.

Existing FaaS providers
• Microsoft Azure Functions 

• AWS Lambda

• Google Cloud Functions

• IBM Cloud Functions 

Function as a Service

 7

CERN Openlab Report

Chirag Arora

Qinling

Qinling is an OpenStack project to provide “Function as a service”. This project
aims to provide a platform to support serverless functions (like AWS Lambda). Qinling
supports different container orchestration platforms (Kubernetes/Swarm, etc.) and
different function package storage backends (local/Swift/S3) by nature using plugin
mechanism.

With Qinling, you can run code without provisioning or managing servers. You pay
only for the compute time you consume—there’s no charge when your code isn’t
running. You can run code for virtually any type of application or backend service—all
with zero administration. Just upload your code and Qinling takes care of everything
required to run and scale your code with high availability. You can set up your code to
automatically trigger from other OpenStack services or call it directly from any web or
mobile app.

Architecture

Function as a Service

 8

CERN Openlab Report

Chirag Arora

qinling-api
A Web Server Gateway Interface that authenticates user and routes requests to

qinling-engine after a preliminary handling for the request. Users can interact with
qinling-api either by sending HTTP request or using openstack CLI provided by python-
qinlingclient.

qinling-engine
A standalone service whose purpose is to process operations such as runtime

maintenance, function execution operations, function autoscaling, etc.

kubernetes
Qinling uses kubernetes as the default backend orchestrator, in order to manage

and maintain the underlying pods to run the functions.

database
Qinling needs to interact with the database (MySQL) to store and retrieve resource

information.

etcd
etcd is a distributed key-value store that provides fast read/write operations for

some specific internal resources in Qinling such as the mapping from functions to the
function services, mapping from function to the workers, etc. In addition, etcd provides
the locking mechanism in Qinling.

rabbit messaging queue
Routes information between the qinling-engine and qinling-api.

Quick Examples
Creating Runtimes

CLI command to create a Runtime:

Example (Create Runtime):

$ openstack runtime create <docker image> --name <runtime name>

$ openstack runtime create openstackqinling/python-runtime --name
python2.7 -f json 
{ 
 "status": "creating", 
 "created_at": "2018-07-20 09:47:07.226801", 
 "description": null, 
 "image": "openstackqinling/python-runtime", 
 "updated_at": null, 
 "project_id": "53bc238760d94399b376c6d499b9a384", 
 "id": "20acaf45-6fbd-4f02-8a6f-6954b5c011ee", 
 "name": "python2.7" 
}

Function as a Service

 9

CERN Openlab Report

Chirag Arora

Creating Functions

CLI command to create a function:

Sample function that generates random names.

Example (Create Function):

$ openstack function create --name <function name> \
 --runtime <runtime id> --entry <entry point> \  
 --file <function source code>

function.py 
import requests 
import random 
 
def main(*args, **kwargs): 
 word_site = "http://svnweb.freebsd.org/csrg/share/dict/words?
view=co&content-type=text/plain" 
 response = requests.get(word_site) 
 words = response.content.splitlines() 
 upper_words = [word for word in words if word[0].isupper()] 
 name_words = [word for word in upper_words if not word.isupper()] 
 name = ' '.join([name_words[random.randint(0, len(name_words))]
for i in range(2)]) 
 return name 
 
if __name__ == '__main__': 
 main()

$ runtime_id=20acaf45-6fbd-4f02-8a6f-6954b5c011ee 
$ openstack function create --runtime $runtime_id --name function \
 --entry function.main --file function.py -f json  
{ 
 "count": 0, 
 "code": { 
 "source": "package", 
 "md5sum": "5b550c24641c4ae87f3dcdf6d9201bb8" 
 }, 
 "description": null, 
 "created_at": "2018-08-09 12:17:15.606715", 
 "updated_at": null, 
 "cpu": 100, 
 "memory_size": 33554432, 
 "runtime_id": “20acaf45-6fbd-4f02-8a6f-6954b5c011ee", 
 "entry": "function.main", 
 "project_id": "53bc238760d94399b376c6d499b9a384", 
 "id": "2970cf72-502d-47a5-96fc-3cfa76d4eb1c", 
 "name": "function" 
}

Function as a Service

 10

CERN Openlab Report

Chirag Arora

Executing Functions

CLI command to execute a function:

Example (Execute Function).

Webhooks

CLI command to create a webhook

Example (Creating Webhook)

An instance of function execution can be made by sending an HTTP POST request to
the url. The input can be specified in JSON format inside the request body. 

$ openstack function execution create <function id>

$ function_id=2970cf72-502d-47a5-96fc-3cfa76d4eb1c
$ openstack function execution create $function_id -f json 
{ 
 "status": "success", 
 "project_id": "53bc238760d94399b376c6d499b9a384", 
 "description": null, 
 "updated_at": "2018-08-09 12:23:11", 
 "created_at": "2018-08-09 12:23:10", 
 "sync": true, 
 "function_version": 0, 
 "result": "{\"duration\": 0.953, \"output\": \"Okinawa
Knoxville\"}", 
 "input": null, 
 "function_id": "2970cf72-502d-47a5-96fc-3cfa76d4eb1c", 
 "id": "4b0ed0aa-1ca3-489e-b384-3ff60ec5be08" 
}

$ openstack webhook create <function id>

$ function_id=2970cf72-502d-47a5-96fc-3cfa76d4eb1c
$ openstack webhook create $function_id -f json 
{ 
 "function_id": "2970cf72-502d-47a5-96fc-3cfa76d4eb1c", 
 "description": null, 
 "created_at": "2018-08-09 12:33:31.037787", 
 "updated_at": null, 
 "function_version": 0, 
 "webhook_url": “http://cci-qinling-001.cern.ch:7070/v1/webhooks/
92fbe186-14ec-4bc3-9d23-68e8e0d96e2b/invoke”, 
 "project_id": "53bc238760d94399b376c6d499b9a384", 
 "id": "92fbe186-14ec-4bc3-9d23-68e8e0d96e2b" 
}

Function as a Service

 11

CERN Openlab Report

Chirag Arora

Contributions to Upstream
Bugs Discovered
Runtime incompatibility with systemd cgroupdriver

I discovered that the provided runtime was incompatible with a Magnum
provisioned Kubernetes cluster on CERN’s cloud. This was because the runtime tried to
limit the resources without checking for the cgroupdriver that was being used. As you
can decipher from the above chat, the runtime is compatible with cgroupfs, whereas
we are using systemd as the cgroupdriver at CERN. Instead of failing the execution, it
makes much more sense to just print a warning and continue with the execution
without limiting the resources.

Patches Submitted

Function as a Service

 12

CERN Openlab Report

Chirag Arora

Support for protocol type in etcd3gw <#26> (Merged)
The etcd3gw package didn’t support the passing of protocol type while creating a

Client instance, but to support secure connection to the etcd server, it is necessary to
be able to specify the protocol type (‘http’/‘https’). Therefore I submitted a patch and
got it merged on Github.

python3 runtime support <2002590> (Merged)
There was a story on the storyboard to add python3 runtime support. I worked on

this feature and submitted a patch which now has been accepted and merged to the
qinling repository.

Support secure connection to etcd <2003284> (Under Review)
Qinling uses etcd key-value store that provides fast read/write operations for some

specific internal resources. So it is important that we provide a way to connect securely
to the etcd server if the server demands so. I submitted a patch that allows the
functionality to be enabled.

Customise timeout for function <2002174> (Under Review)
Providing execution timeout is a failsafe feature that prevents over utilisation of

resources and also saves from scenarios such as an infinite loop.

Custom initial number of replica sets <2003095> (Abandoned)
It can also be sometimes useful to specify the initial number of replica sets during

creation of a runtime. We later came to a conclusion that it would be better to provide
runtime scaleup/scaledown feature just like the function scaleup/scaledown. 

Function as a Service

 13

https://github.com/dims/etcd3-gateway/pull/26
https://storyboard.openstack.org/#!/story/2002590
https://storyboard.openstack.org/#!/story/2003284
https://storyboard.openstack.org/#!/story/2002174
https://storyboard.openstack.org/#!/story/2003095

CERN Openlab Report

Chirag Arora

Next Steps
If I had more time in my hands, I would have worked on the following:

• Testing Qinling scalability: One of the main things that should be tested is perhaps
the breaking point of the service. We need to check what would happen if the
workload is increased dramatically. This can be achieved by creating and
executing thousands of function concurrently.

• Integration with other OpenStack services: Since Qinling is an OpenStack project,
it would be amazing to have it integrated with other OpenStack services such as
aodh and glance. This is similar to how AWS Lambda can easily be integrated with
other AWS services.

• Integration with CERN Infrastructure: Since I am working on this project as part of
CERN, it would have been even exciting to find interesting uses cases over here.
One of them could be integrate Qinling function with monitoring services such as
Graphana. Graphana can trigger the function webhook which in turn can run your
custom code and perform analysis on the input. 

Function as a Service

 14

CERN Openlab Report

Chirag Arora

Conclusion
FaaS has helped in bringing an era of serverless computing. Focusing less on the

infrastructure, people can be more productive with their work while also being
efficient in terms of using resources in a quantised and on-demand manner.

With closed-source cloud providers excelling in the world of FaaS, there was a
need of a open-source alternative. The constant effort of the upstream community has
finally lead to maturity of the Qinling project. The first preview of the Qinling dashboard
was released last week. And this means the project is becoming user friendly day by
day. It would be even more amazing to see runtimes that can support other
programming languages. It will also be helpful if seamless installation on any
environment through distributable packages can be made available anytime soon.

All in all this internship was a fantastic experience for me. There are currently very
few people involved in the Qinling project, but I can proudly say that this internship has
helped in adding one more name to the list of contributors.

Function as a Service

 15

	Preface
	Abstract
	Introduction
	OpenStack
	CERN Cloud
	FaaS
	Serverless Computing
	Functions as a Service
	FaaS Advantages
	Existing FaaS providers
	Qinling
	Architecture
	qinling-api
	qinling-engine
	kubernetes
	database
	etcd
	rabbit messaging queue
	Quick Examples
	Creating Runtimes
	Creating Functions
	Executing Functions
	Webhooks
	Contributions to Upstream
	Bugs Discovered
	Runtime incompatibility with systemd cgroupdriver
	Patches Submitted
	Support for protocol type in etcd3gw <#26> (Merged)
	python3 runtime support <2002590> (Merged)
	Support secure connection to etcd <2003284> (Under Review)
	Customise timeout for function <2002174> (Under Review)
	Custom initial number of replica sets <2003095> (Abandoned)
	Next Steps
	Conclusion

